Abstract
Cosmic symplectites (COSes), consisting mainly of nanoscaled symplectic intergrowths of magnetite and Fe-Ni sulfides, have extremely heavy oxygen isotopic compositions and are considered tracers of 16O-poor primordial ice in the early solar system. We examined the three-dimensional microstructure and mineralogy of one COS particle, COS#1, in the Acfer 094 carbonaceous chondrite and investigated its origin. Synchrotron-radiation based X-ray computed nanotomography revealed a presence of micro-inclusions inside COS#1. The largest inclusion consists mainly of high-temperature phases of anhydrous sodium sulfate (Na2SO4) and elemental sulfur, which seem to have been formed from a Na2SO4-S eutectic melt. COS#1 showed a trilayered structure surrounding the large inclusion: the innermost coarse-grained layer consisting mainly of 100–200 nm-sized magnetite and Fe-sulfide, the symplectite layer consisting mainly of nanoscaled symplectic intergrowths of magnetite and Fe-Ni sulfides, and the outermost Fe-oxide layer. The symplectite layer comprises the major volume of COS#1 and shows the pseudomorphic structure of precursor Fe-Ni metal grains. The coarse-grained layer seems to have been formed via metal–salt interaction (hot corrosion) at high temperatures, where the precursor Fe-Ni metals contacted with the Na2SO4-S melt. The symplectite formed simultaneously with the coarse-grained layer due to high-speed diffusion of sulfur and oxygen inside the metal grains. The high-temperature metal–salt interactions should have occurred before the incorporation of COS#1 into the meteorite parent body. The precursor of COS#1 should have consisted of Fe-Ni metals and O-Na-S-rich material. The two reductive and oxidative components seem to have formed separately and got together by some mechanical mixing processes in nebula. The COS#1 precursor was heated in a short period and the O-Na-S-rich material melted. The melt induced the hot corrosion of the Fe-Ni metals and was subsequently cooled and solidified. Subsequently, it was incorporated into the meteorite parent body as COS#1. In the parent body, aqueous alteration occurred and formed the outermost Fe-oxide layer on the COS#1 surface.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have