Abstract

Selective switching of a magneto-resistive random access memory (MRAM) multilayer stack is demonstrated using resonant spin-polarized alternating currents (AC) superimposed on spin-polarized direct currents. Finite element micromagnetic simulations show that the use of frequency triggered AC allows one to maximize the transferred spin transfer torque selectively in order to merely reverse the magnetization of a single storage layer in a stack. Using layers with different resonance frequencies, which are realized by altering the anisotropy constants, allows one to address them by tuning the AC frequency. A rapid increase of the storage density of MRAM devices is shown by using three-dimensional sandwich structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.