Abstract

Emerging nonvolatile memory technologies open new perspectives for original computing architectures. In this paper, we propose a new type of flexible and energy-efficient architecture that relies on power-gated distributed magnetoresistive random access memory (MRAM). The proposed architecture uses a network-on-chip (NoC) to interconnect MRAM-based clusters, processing elements, and managers. The NoC distributes application-specific commands to MRAM devices by means of packets. Configurable network interfaces allow to transform MRAM devices into smart units able to respond to incoming commands. In this context, three types of MRAM designs are proposed with different power-gating policies and granularities. A relevant database search engine case study is considered to illustrate the benefits of this proposed architecture. It is implemented with a sparse-neural-network approach and simulated in SystemC with different scenarios including hundreds of database queries. Hardware designs and accurate power estimations have been conducted. The obtained results demonstrate important power reduction with database hit rates of about 94%. Targeting 65-nm technology, energy savings reach 87% when compared with an static random access memory-based implementation. Moreover, a new asymmetric read/write MRAM type provides from 39% to 50% energy reduction with respect to the other fixed-granularity models. This results in a low-power, highly scalable, and configurable implementation of memory-based computing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.