Abstract

In this paper, the J-integral is derived for temperature-dependent elastic–plastic materials described by incremental plasticity. It is implemented using the equivalent domain integral method for assessment of three-dimensional cracks based on results of finite-element calculations. The J-integral considers contributions from inhomogeneous temperature fields and temperature-dependent elastic and plastic material properties as well as from gradients in the plastic strains and the hardening variables. Different energy densities are considered, the Helmholtz free energy and the stress-working density, providing a physical meaning of the J-integral as a fracture criteria for crack growth. Results obtained for a plate with two different crack configurations each loaded by a cool-down thermal shock show domain-independence of the incremental J-integral for different energy densities even for high temperature gradients and significant temperature-dependence of the yield stress and the hardening exponent in the presence of large scale yielding. Hence, the derived J-integral is an appropriate parameter for the assessment of cracks in thermomechanically loaded components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call