Abstract

Near-field and far-field high-energy diffraction microscopy and microcomputed tomography X-ray techniques were used to study a bulk single crystal nickel‑titanium shape memory alloy sample subjected to thermal cycling under a constant applied load. Three-dimensional in situ reconstructions of the austenite microstructure are presented, including the structure and distribution of emergent grain boundaries. After 1 cycle, the subgrain structure is significantly refined, and heterogeneous Σ3 and Σ9 grain boundaries emerge. The low volume and uneven dispersion of the emergent Σ boundaries across the volume show why previous transmission electron microscopy investigations of Σ grain boundary formation were inconsistent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.