Abstract

Deformation heterogeneities at the microstructural length-scale developed in polycrystalline shape memory alloys (SMAs) during superelastic loading are studied using both experiments and simulations. In situ X-ray diffraction, specifically the far-field high energy diffraction microscopy (ff-HEDM) technique, was used to non-destructively measure the grain-averaged statistics of position, crystal orientation, elastic strain tensor, and volume for hundreds of austenite grains in a superelastically loaded nickel-titanium (NiTi) SMA. These experimental data were also used to create a synthetic microstructure within a finite element model. The development of intragranular stresses were then simulated during tensile loading of the model using anisotropic elasticity. Driving forces for phase transformation and slip were calculated from these stresses. The grain-average responses of individual austenite crystals examined before and after multiple stress-induced transformation events showed that grains in the specimen interior carry more axial stress than the surface grains as the superelastic response “shakes down”. Examination of the heterogeneity within individual grains showed that regions near grain boundaries exhibit larger stress variation compared to the grain interiors. This intragranular heterogeneity is more strongly driven by the constraints of neighboring grains than the initial stress state and orientation of the individual grains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.