Abstract
In order to improve the multiple-missile cooperative attack capability and penetration capability, this paper investigates two three-dimensional impact-angle-constrained cooperative guidance strategies against maneuvering target for controllable thrust missiles. First, a three-dimensional nonlinear guidance model is established that does not assume small missile lead angles in the guidance process. Second, in the line-of-sight (LOS) direction of the cluster cooperative guidance strategy, the proposed guidance algorithm transforms the simultaneous attack problem into a second-order multiagent consensus problem, which effectively solves the practical problem of low guidance precision provoked by the time-to-go estimation. Then, by combining second-order sliding mode control (SMC) and nonsingular terminal SMC theory, the guidance algorithms in the normal and lateral directions to the LOS are designed, respectively, so that the multi-missile can accurately attack a maneuvering target while satisfying the impact angle constraints. Finally, by utilizing the second-order multiagent consensus tracking control in the leader-following cooperative guidance strategy, a novel leader-following time consistency algorithm is investigated to ensure that the leader and followers can attack the maneuvering target simultaneously. Moreover, the stability of the investigated guidance algorithms is proved mathematically. The effectiveness and superiority of the proposed cooperative guidance strategies are verified by numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.