Abstract
Blood supply to the meniscus determines its recovery and is a reference for treatment planning. This study aimed to apply tissue clearing and three-dimensional (3D) imaging in exploring the quantitative distribution of blood vessels in the mouse meniscus. In this experimental study, tissue clearing was performed to treat the bilateral knee joints of transgenic mice with fluorescent vascular endothelial cells. Images were acquired using a light sheet microscope and the vascular endothelial cells in the meniscus was analysed using 3D imaging. Quantitative methods were employed to further analyse the blood vessel distribution in the mouse meniscus. The traditional three-equal-width division of the meniscus is as follows: the outer one-third is the red-red zone (RR), the inner one-third is the white-white zone (WW), and the transition area is the red-white zone (RW). The division revealed significant signal differences between the RW and WW (P<0.05) zones, but no significant differences between the RR and RW zones, which indicated that the division might not accurately reflect the blood supply of the meniscus. According to the modified division (4:2:1) in which significant differences were ensured between the adjacent zones, we observed that the width ratio of each zone was 38 ± 1% (RR), 24 ± 1% (RW), and 38 ± 2% (WW). Furthermore, the blood supply to each region was verified. The anterior region had the most abundant blood supply. The fluorescence count in the anterior region was significantly higher than in the central and posterior regions (P<0.05). The blood supply of the medial meniscus was superior to the lateral meniscus (P<0.05). Analysis of the blood supply to the mouse meniscus under tissue clearing and 3D imaging reflect quantitative blood vessel distribution, which would facilitate future evaluations of the human meniscus and provide more anatomical references for clinicians.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have