Abstract

When modeling ultrasonic wave propagation in metals, it is important to introduce mesoscopic crystalline structures because the anisotropy of the crystal structure and the heterogeneity of grains disturb ultrasonic waves. In this paper, a three-dimensional (3D) polycrystalline structure generated by multiphase-field modeling was introduced to ultrasonic simulation for nondestructive testing. 3D finite-element simulations of ultrasonic waves were validated and compared with visualization results obtained from laser Doppler vibrometer measurements. The simulation results and measurements showed good agreement with respect to the velocity and front shape of the pressure wave, as well as multiple scattering due to grains. This paper discussed the applicability of a transversely isotropic approach to ultrasonic wave propagation in a polycrystalline metal with columnar structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.