Abstract

The use of fiber reinforced plastics (FRPs) as structural components has significantly increased in recent years. FRPs are made of stacks of plies, each of which is reinforced by fibers. When modeling ultrasonic wave propagation in FRPs, it is important to introduce three-dimensional mesoscopic and microscopic structures to account for the anisotropy and heterogeneity caused by fiber orientation and the lay-up of laminates. In this study, a finite element method using an image-based modeling is applied to simulation of ultrasonic wave propagation in a carbon FRP (CFRP). Here, the elastic stiffness of a single ply is determined using a homogenization method, where a CFRP microstructure is incorporated on the basis of a two-scale asymptotic expansion. The wave propagation in a CFRP specimen composed of unidirectionally aligned fibers is calculated, and the simulation results are compared to visualization results obtained for ultrasonic wave propagation using a laser scanning device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.