Abstract

The determination of effective material properties of composites based on a three-dimensional representative volume element (RVE) is considered in this paper. The material variation in the RVE is defined based on the colour intensity in each voxel of an image which can be obtained from imaging techniques such as X-ray computed tomography (XCT) scans. The RVE is converted into a numerical model using hierarchical meshing based on octree decompositions. Each octree cell in the mesh is modelled as a scaled boundary polyhedral element, which only requires a surface discretisation on the polyhedron’s boundary. The problem of hanging (incompatible) nodes – typically encountered when using the finite element method in conjunction with octree meshes – is circumvented by employing special transition elements. Two different types of boundary conditions (BCs) are used to obtain the homogenised material properties of various samples. The numerical results confirm that periodic BCs provide a better agreement with previously published results. The reason is attributed to the fact that the model based on the periodic BCs is not over-constrained as is the case for uniform displacement BCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.