Abstract
We have designed, fabricated, and tested a novel three-dimensional (3-D) flexible microprobe used for recording the neural signals of lateral giant (LG) on the escape system of American crayfish. We report an electrostatic actuation process to fold the planar probes to be the arbitrary orientations of 3-D probes for neuroscience application. The batch assembly method based on electrostatic force techniques gave more simple fabrication compared to others. A flexible probe could reduce both the chronic inflammation response and material fracture when animal breathes or moves. Furthermore, the cortex corresponds to hypothetical cortical modules with mostly vertically organized layers of neurons. Therefore, the 3-D flexible probe suits to understand how the cooperative activity for different layers of neurons. Advisedly, we present a novel fabrication for the 3-D flexible probe by using Parylene technology. The mechanical strength of the neural probe is strong enough to penetrate into a biogel. At the end, the flexible probe was used to record neural signals of the LG cell from American crayfish.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.