Abstract
The computed tomography of chemiluminescence (CTC) can be used to reconstruct a three-dimensional (3D) flame chemiluminescence field to obtain information about the spatial characteristics of the flame. However, additional information is needed to solve the ill-posed inverse problem of the CTC due to the constraints such as economy of CTC system and the number of views. In this study, a PR-SART algorithm is proposed for 3D flame reconstruction by combining the flame outer contour pre-reconstruction model with the simultaneous algebraic reconstruction technique (SART). The influence of the number of pre-reconstruction iterations is analyzed in numerical studies. The reconstruction performance of the SART algorithm is compared with the PR-SART algorithm for two flame structures under various numbers of views and noise conditions. Finally, an OH* chemiluminescence imaging system consisting of 8 ultraviolet (UV) cameras is developed, and evaluated through use of reconstructing the 3D structure of low-swirl flames. Numerical and experimental studies indicate that the proposed algorithm and CTC system are effectively capable of removing the reconstruction error in the flame-free region, improving the reconstruction quality, and reducing the computational cost.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.