Abstract

Three-dimensional finite-element (FE) analysis of a fold-thrust belt wedge model provides graphical and quantitative information for the strain geometry, kinematics, and mechanics of salient formation in three-dimensionalspace. A nonlinear, elastic-plastic FE model, using the initial basin configuration of the restored Provo salient, Utah, develops realistic deformation features (e.g., salient) in the deformed sedimentary prism. The three-dimensional fold-thrust belt wedge model shows different deformation characteristics (based on S 1 , γ m a x , and σ 1 orientations and material-displacement directions) in different parts of the salient, and its behavior is closely related to the preexisting template of the predeformational basin shape. The model results indicate plane-strain deformation with symmetric finite-strain geometry in the middle of the salient and nonplane-strain deformation with nonsymmetric finite-strain geometry at the lateral boundaries. Thus, conventional two-dimensional plane-strain assumptions in fold-thrust belt analysis (e.g., in balancing cross sections) are reasonable only in the middle of the salient; however, at the lateral boundaries, the results indicate fully three dimensional deformation and suggest that restorations need to be more carefully constrained in three dimensions on the basis of detailed geologic data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.