Abstract
Abstract Ultrahigh-temperature metamorphism (UHTM) is important for the evolution and long-term stability of continental crust. The Anosyen domain in southeastern Madagascar is a well-preserved UHTM terrane that formed during the amalgamation of Gondwana. The heat source(s) required to reach peak conditions is(are) a matter of debate. One potential cause of extreme crustal heating is the intrusion of mantle-derived melts into the crust. Foundering of the mantle lithosphere can also lead to increased heat flow. To assess the role of these heating mechanisms, we measured zircon δ18O, εHf(t) compositions, and U-Pb dates for plutonic rocks in the midcrustal UHTM domain. Our results indicate that pluton emplacement predated UHTM by as much as 40 m.y. and that all zircons have crustal O and Hf isotopic compositions. We propose that mantle lithosphere foundering caused melting in the lower crust, producing the magmas responsible for plutonism during the early stages of orogenesis. Prolonged conductive heating of the crust—combined with above-average radiogenic heating—may explain why UHTM occurred ∼40 m.y. after foundering. This suggests that foundering of the mantle lithosphere can swiftly lead to partial melting in the lower crust, as well as protracted heating of the middle crust that culminates tens of millions of years later.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have