Abstract

A three-dimensional (3-D) finite-difference time domain (FDTD) algorithm is developed to study the transformation of an electromagnetic wave by a dynamic (time-varying) inhomogeneous magnetized plasma medium. The current density vector is positioned at the center of the Yee cube to accommodate the anisotropy of the plasma medium due to the presence of a static magnetic field. An appropriate time-stepping algorithm is used to obtain accurate solutions for arbitrary values of the collision frequency and the electron cyclotron frequency. The technique is illustrated by calculating the frequency shifts in a cavity due to a switched magnetoplasma medium with a time varying and space-varying electron density profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.