Abstract

A three-dimensional (3-D) finite difference time domain (FDTD) algorithm with perfectly matched layer (PML) absorbing boundary condition (ABC) is presented for general inhomogeneous, dispersive, conductive media. The modified time-domain Maxwell's equations for dispersive media are expressed in terms of coordinate-stretching variables. We extend the recursive convolution (RC) and piecewise linear recursive convolution (PLRC) approaches to arbitrary dispersive media in a more general form. The algorithm is tested for homogeneous and inhomogeneous media with three typical kinds of dispersive media, i.e., Lorentz medium, unmagnetized plasma, and Debye medium. Excellent agreement between the FDTD results and analytical solutions is obtained for all testing cases with both RC and PLRC approaches. We demonstrate the applications of the algorithm with several examples in subsurface radar detection of mine-like objects, cylinders, and spheres buried in a dispersive half-space and the mapping of a curved interface. Because of their generality, the algorithm and computer program can be used to model biological materials, artificial dielectrics, optical materials, and other dispersive media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.