Abstract

Kagome lattices offer a fertile ground to explore exotic quantum phenomena associated with electron correlation and band topology. The recent discovery of superconductivity coexisting with charge-density wave (CDW) in the kagome metals KV3Sb5, RbV3Sb5, and CsV3Sb5 suggests an intriguing entanglement of electronic order and superconductivity. However, the microscopic origin of CDW, a key to understanding the superconducting mechanism and its possible topological nature, remains elusive. Here, we report angle-resolved photoemission spectroscopy of KV3Sb5 and demonstrate a substantial reconstruction of Fermi surface in the CDW state that accompanies the formation of small three-dimensional pockets. The CDW gap exhibits a periodicity of undistorted Brillouin zone along the out-of-plane wave vector, signifying a dominant role of the in-plane inter-saddle-point scattering to the mechanism of CDW. The characteristics of experimental band dispersion can be captured by first-principles calculations with the inverse star-of-David structural distortion. The present result indicates a direct link between the low-energy excitations and CDW, and puts constraints on the microscopic theory of superconductivity in alkali-metal kagome lattices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.