Abstract
One novel trend in reducing aero-engine noise is to utilize the silent flight mechanism of owls by applying perforations on fan stator vanes. Consequently, the establishment of relevant theoretical models is of particular interest. The current efforts made in this regard are just targeting the features based on two-dimensional models without including the three-dimensionality. In this paper, we present a three-dimensional solution for acoustic scattering by annular perforated cascades, and the dipole source corresponding to the unsteady pressure loading on the vanes is identified as the dominant sound source. By the singularity method, the acoustic response is obtained with the soft boundary condition applied on the vane surfaces. It is found that considerable noise reduction can be achieved for rotor–stator interaction with a modest uniform porosity, and accordingly two mechanisms are proposed to understand the effect of porosity on propagating sound. The first is that the perforations allowing a normal velocity across the vane reduce the unsteady loading induced by the incident disturbances. The second is that the three-dimensional interactions among the dipole sources at different positions are also dampened by the soft boundaries, thus the distribution of the unsteady pressure loading on the vanes will also change significantly compared to hard-vane cases. Non-uniform distributions of porosity are investigated further, indicating that perforations in the vane upstream area are more effective in reducing propagating noise. Our method is fully three-dimensional and capable of investigating non-uniform porosity, and thus is able to provide useful guidance for future soft vane designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.