Abstract
Sensitivity tests are performed to assess the respective influences of the large-scale ventilation and of the near-equatorial winds on the dynamics of the the subsurface countercurrents (SCCs) and thermostad. They show that the intensity of the inertial jets is a function of the potential vorticity (PV) values at subduction and that stronger jets are favored by low PV injection, forced in the authors’ framework either by a deep mixed layer at subduction and/or by an injection of PV at lower latitudes. Such circumstances lead to a strong meridional shoaling of the thermocline near the equator. The resulting inertial jets occur at about 3 8N in the western part of the basin and are the poleward limit of a near-0 PV region and of an equatorial thermostad. A necessary condition for the existence of inertial jets is that the equatorial wind fetch is large enough, otherwise only weak time-mean eastward currents are produced by a nonlinear rectification of instability waves farther away from the equator. The presence of a North Equatorial Countercurrent does not constitute a barrier for equatorward motions within the lower thermocline, and inertial jets are still controlled by the meridional slope of the SSCs’ layer setup through the establishment of tropical PV pools predicted by ventilation theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.