Abstract

The design and fabrication of complex microfluidic devices is a subject of broad biomedical and technological interest. In this paper, we demonstrate the fabrication of a three-dimensional (3D) dielectrophoretic microparticle separator involving ultraviolet (UV)-assisted direct-write assembly of a UV-curable polyurethane. This approach yields a series of 3D microcoil interdigitated electrodes with defined geometry promoting particle separation through dielectrophoresis. These vertical microcoils give rise to considerable improvements in separation relative to standard planar (2D) microelectrodes. We envisage that the complex 3D electrodes will provide an enabling platform for a wide array of fluidic- and electronic-based applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.