Abstract

Eddies play an important role in transporting and redistributing the heat, salt, and biological parameters in the global ocean. In this study, three-dimensional physio-biochemical characteristics of an anticyclonic (AE) and a cyclonic eddy (CE) associated with the poleward western boundary current (WBC) in the Bay of Bengal (BoB) are analyzed using a coupled bio-physical ocean model (ROMS-NPZD). Due to eddy-induced upwelling (downwelling) associated with the CE (AE), monopole patterns of temperature and salinity anomaly around the eddy center are occurred with extremum values at 100 – 150 m and 50 – 100 m depth, respectively. The upward (downward) curvature with a tip at eddy centers is observed in the isothermal layer depth, 20℃ isotherm (D20) nutricline, and oxycline. The depth of D20 deepens and shallows at the center from the edge by ∼60 m and ∼40 m for AE and CE, respectively. A relatively thick barrier layer around the center of AE is noted as compared to the CE. Within eddy interior, temperature and salinity tendencies of horizontal advection show a strong dipole pattern with extremum at eddy edges. The AE currents show positive tendencies in horizontal advection of temperature (salinity) at its northeastern (southwestern) side, which is totally opposite to that of CE. Intense horizontal advections in the adjacent flanks of eddies to the eastward jet of the WBC are due to their strong interactions. Vertical advection shows a quadrupole structure with alternating positive and negative cells within the eddies following the distorted vertical velocity field. Diffusion terms within eddies are quite small compared to the advection. Abundances of chlorophyll-a (∼1.2 mg/m3) at the base of the mixed layer around the CE center are absent for the AE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.