Abstract
Purpose: To develop an imaging-based 3D catheter navigation system for transbronchial procedures including biopsy and tumor ablation using a single-plane C-arm x-ray system. The proposed system provides time-resolved catheter shape and position as well as motion compensated 3D airway roadmaps. Approach: A continuous-sweep limited angle (CLA) imaging mode where the C-arm continuously rotates back and forth within a limited angular range while acquiring x-ray images was used for device tracking. The catheter reconstruction was performed using a sliding window of the most recent x-ray images, which captures information on device shape and position versus time. The catheter was reconstructed using a model-based approach and was displayed together with the 3D airway roadmap extracted from a pre-navigational cone-beam CT (CBCT). The roadmap was updated in regular intervals using deformable registration to tomosynthesis reconstructions based on the CLA images. The approach was evaluated in a porcine study (three animals) and compared to a gold standard CBCT reconstruction of the device. Results: The average 3D root mean squared distance between CLA and CBCT reconstruction of the catheter centerline was for a stationary catheter and for a catheter moving at . The average tip localization error was and , respectively. Conclusions: The results indicate catheter navigation based on the proposed single plane C-arm imaging technique is feasible with reconstruction errors similar to the diameter of a typical ablation catheter.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have