Abstract

Compared with low-dimensional solitons that are widely studied in various realizable nonlinear physical systems, the properties and dynamics of three-dimensional solitons and vortices have not been well disclosed yet. Using numerical simulations and theoretical analysis, we here address the existence, structural property, and dynamics of three-dimensional gap solitons and vortices (with topological charge s=1) of Bose–Einstein condensates moving by Lévy flights (characterized by fractional diffraction operators, Lévy index 1<α≤2) in optical lattices. We stress that previously the localized modes have only been revealed in low-dimensional nonlinear fractional systems in one- and two-dimensional periodic potentials, our study presented here thus drives the associated nonlinear-wave research into three-dimensional configurations. The three-dimensional optical lattices exhibit a nontrivial wide band-gap feature, within which the matter-wave localized gap modes could be excited. The stability and instability regions of both three-dimensional gap modes are obtained via direct perturbed simulations, shedding light on multidimensional soliton physics in nonlinear fractional systems with periodic potentials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call