Abstract

Optimization of blade stacking in the last stage of low-pressure (LP) steam turbines constitutes one of the most delicate and time-consuming parts of the design process. This is the first of two papers focusing on the stacking strategies applied to the last stage guide vane (G0). Following a comprehensive review of the main features that characterize the LP last stage aerodynamics, the three-dimensional (3D) computational fluid dynamics (CFD) code used for the investigation and options related to the modeling of wet steam are described. Aerodynamic problems related to the LP last stage and the principles of 3D stacking are reviewed in detail. In this first paper, the results of a systematic study on an isolated LP stator row are used to elucidate the effects of stacking schemes, such as lean, twist, sweep, and hub profiling. These results show that stator twist not only has the most powerful influence on the reaction variation but it also produces undesirable spanwise variations in angular momentum at stator exit. These may be compensated by introducing a positive stagnation pressure gradient at entry to the last stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call