Abstract

Abstract Aircraft electrification introduces challenges in power and thermal management. In a hybrid-electric aircraft (HEA), the additional heat loads generated by the high-power electrical components in the propulsion system can negate the benefits of the HEA. Consequently, an integrated energy management system is required for the HEA to reject the additional heat loads while minimizing energy consumption. This paper presents the integrated modelling method for an integrated power and thermal management system (IPTMS) for HEA. With this method, a platform can be developed to assess the varying efficiencies of the components in the electrical propulsion system (EPS), and the performance of the thermal management system (TMS), such as passive cooling, during a flight mission. This makes it applicable to modular designs and optimizations of the IPTMS. A small/medium range (SMR) aircraft similar to ATR72 is studied. In this study, the EPS operates only during take-off and climb. Therefore, the platform assesses the heat and power loads of the IPTMS for a typical flight mission (take-off and climb) in this study. The performance of passive cooling is also analysed across this typical flight mission and under normal, hot-day, and cold-day conditions. It was found that passive cooling is sufficient under these three conditions, and the active temperature control is requried to ensure the components' temperatures are above the minimum temperatures. These findings imply the potential to minimize TMS weight and energy consumption, providing an insight for further research on IPTMS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.