Abstract
A three-dimensional (3-D) multiresolution time-domain (MRTD) analysis is presented based on a biorthogonal-wavelet expansion, with application to electromagnetic-scattering problems. We employ the Cohen-Daubechies-Feauveau (CDF) biorthogonal wavelet basis, characterized by the maximum number of vanishing moments for a given support. We utilize wavelets and scaling functions of compact support, yielding update equations involving a small number of proximate field components. A detailed analysis is presented on algorithm implementation, with example numerical results compared to data computed via the conventional finite-difference time-domain (FDTD) method. It is demonstrated that for 3-D scattering problems the CDF-based MRTD often provides significant computational savings (in computer memory and run time) relative to FDTD, while retaining numerical accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.