Abstract

In this study, we evaluated the use of graphene oxide (GO) mixed with methyl methacrylate gelatin (GelMA) for the construction of a microenvironmental implant to repair bone defects in orthopedic surgery. A scaffold containing a GelMA/GO composite with mesenchymal stem cells (MSCs) was constructed using three-dimensional bioprinting. The survival and osteogenic capacity of MSCs in the composite bioink were evaluated using cell viability and proliferation assays, osteogenesis-related gene expression analysis, and implantation under the skin of nude mice. The printing process had little effect on cell viability. We found that GO enhanced cell proliferation but had no significant effect on cell viability. In vitro experiments suggested that GO promoted material-cell interactions and the expression of osteogenesis-related genes. In vivo experiments showed that GO decreased the degradation time of the material and increased calcium nodule deposition. In contrast to pure GelMA, the addition of GO created a suitable microenvironment to promote the differentiation of loaded exogenous MSCs in vitro and in vivo, providing a basis for the repair of bone defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call