Abstract

In this work, 3-D and two-phase nanofluid flow and heat transfer is modeled over a stretching infinite solar plate. The governing equations are presented based on previous studies. The infinite boundary condition and shortcoming of traditional analytical collocation method have been overcome in our study by changing the problem into a finite boundary problem with a new analytical method called optimal collocation method. The accuracy of results is examined by fourth order Runge-Kutta numerical method. Effect of some parameters, Prandtl number, Schmidt number, Brownian motion parameter, thermophoresis parameter, ?=b/a (ratio of the stretching rate along y- to x-directions), and power-law index on the velocities, temperature, and nanoparticles concentration functions are discussed. As an important outcome of our 3-D model analysis, it is found that increase in thermophoretic forces can enhance the thickness of both thermal and nanoparticle volume fraction boundary-layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call