Abstract
A three-dimensional (3D) effective stress finite element analysis, modified to account for hydrofracturing and gassy soil behavior, is used to examine the potential for the venting of water and gas from a bedrock aquifer and through 13–14 m of low permeability clayey silt between the base of the excavation and the bedrock following excavation to about 24 m in an approximately 40 m thick clayey silt deposit. The clayey deposit contained sand lenses with dissolved gas. The analysis predicts that the exsolution of this dissolved gas, caused by a reduction in total stress due to the excavation, results in liquefaction of the sand in the lenses and consequent lateral deformations of the side slopes. The analysis predicts hydrofracturing through the remaining clayey silt when the excavation reaches its final depth and this explains the venting of water and gas from the underlying aquifer that was observed above a local bedrock high. The presence of gassy sand lenses created weak zones within the clayey deposit that influenced the path of the hydrofracturing. However, the analyses suggest that, for the depth of excavation and bedrock elevation examined, hydrofracturing and subsequent venting would have occurred even if there had been no sand lenses.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have