Abstract

This work aims to investigate the wear and frictional behaviour of a new epoxy composite based on treated betelnut fibres subjected to three-body abrasion using different abrasive particle sizes (500 μm, 714 μm and 1430 μm) and sliding velocities (0.026–0.115 m s −1) at constant applied load (5 N) using a newly developed Linear Tribo Machine. The worn surfaces of the composite were studied using scanning electron microscope. The work revealed that the predominant wear mechanism of treated betelnut fibre reinforced epoxy (T-BFRE) composite sliding against grain sands was plastic deformation, pitting and pullout of betelnut fibres. The composite exhibited higher values in frictional coefficient when it was subjected against coarse sand. Besides, the abrasive wear of the composite is depending on the size of abrasive particles and sliding velocity. Higher weight loss is noticed at high sliding velocities. The specific wear rate for the composite subjected to three different sand particles follow the order of: coarse > grain > fine sands respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call