Abstract
In machine dynamics impacts may occur by interaction of solid bodies. There is no doubt that the method of multibody systems is most efficient for the dynamical analysis of the overall motion. However, during impact energy is lost macromechanically measured by the coefficient of restitution. This coefficient has to be estimated from experiments and experience but cannot be computed within the multibody system approach. The impacts, on the other hand, are generating waves in the bodies which are propagating until they are vanishing due to material damping. These high frequency phenomena are analyzed using wave propagation, modal approach and finite elements. The results of the simulation on the fast time scale are used to compute the coefficient of restitution which is then fed back to the multibody system equations and the solution continues on the related slow time scale. The efficiency of the approach presented is shown for the impact of a steel sphere on four different shaped aluminum bodies of comparable mass. The simulation results are verified with experiments performed on different time scales, too. Using the impact of a double pendulum on a stop as example, the application of the multiscale approach to a multibody system is shown.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have