Abstract

Thermostability of β-glucosidase was enhanced by family shuffling, site saturation mutagenesis, and site-directed mutagenesis. Family shuffling was carried out based on β-glucosidase BglC from Thermobifida fusca and β-glucosidase BglB from Paebibacillus polymxyxa with the help of synthetic primers. High-throughput screening revealed mutants with higher thermostability than both parental enzymes. The most thermostable mutant VM2 containing three key amino acid changes in L444Y/G447S/A433V had a 144-fold increase in half-life of inactivation as compared to the parental enzyme BglC. The mutant VM2 showed 28% and 94% increase in k(cat) towards p-nitrophenyl-β-D-glucopyranoside (pNPG) and cellobiose, respectively. The mutant with enhanced stability would facilitate the recycle of β-glucosidase in the bioconversion of cellulosic biomass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.