Abstract
Three-dimensional GaN island growth without any masks was first introduced under high pressure in metalorganic chemical vapor deposition after the growth of AlN and AlGaN buffer layers on Si (111) substrate, followed by two-dimensional GaN growth to form a continuous GaN film with improvement of the crystalline quality and surface smoothness. X-ray diffraction and cross-sectional scanning transmission electron microscopy analyses show that a high-quality GaN film can be achieved by bending of edge threading dislocations (TDs) and the formation of dislocation half-loops. It is observed that most of edge TDs bend 90° from the growth direction along c-axis, whereas mixed TDs bend about 30° towards the inclined sidewall facets of the islands. Consequently, a 1.2 μm thick GaN epitaxial film with a low threading dislocation density of 2.5 × 108 cm−2 and a smooth surface of 0. 38 nm roughness can be achieved on Si substrate.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have