Abstract

CDK11(p58), a member of the p34(cdc2)-related kinase family, is associated with cell cycle progression, tumorigenesis, and proapoptotic signaling. It is also required for the maintenance of chromosome cohesion, the maturation of centrosome, the formation of bipolar spindle, and the completion of mitosis. Here we identified that CDK11(p58) interacted with itself to form homodimers in cells, whereas D224N, the kinase-dead mutant, failed to form homodimers. CDK11(p58) was autophosphorylated, and the main functions of CDK11(p58), such as kinase activity, transactivation of nuclear receptors, and proapoptotic signal transduction, were dependent on its autophosphorylation. Furthermore, the in vitro kinase assay indicated that CDK11(p58) was autophosphorylated at Thr-370. By mutagenesis, we created CDK11(p58) T370A and CDK11(p58) T370D, which mimic the dephosphorylated and phosphorylated forms of CDK11(p58), respectively. The T370A mutant could not form dimers and be phosphorylated by the wild type CDK11(p58) and finally lost the kinase activity. Further functional research revealed that T370A failed to repress the transactivation of androgen receptor and enhance the cell apoptosis. Overall, our data indicated that Thr-370 is responsible for the autophosphorylation, dimerization, and kinase activity of CDK11(p58). Moreover, Thr-370 mutants might affect CDK11(p58)-mediated signaling pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.