Abstract

The human monocytic leukemia cell line, THP-1, shares many properties with human monocyte-derived macrophages and might be a useful model for studying foam cell formation in vitro. Therefore, we examined the ability of THP-1 cells to accumulate cholesteryl esters, the hallmark feature of foam cells, in response to culture with native low density lipoprotein (LDL), modified LDL, and platelets. THP-1 cells stored more cholesteryl esters than macrophages in response to 200 micrograms/ml of LDL. Down-regulation of LDL receptors occurred in macrophages at lower LDL concentrations than in THP-1 cells. Phorbol ester-treated THP-1 cells stored more cholesteryl esters than human macrophages in response to 25-200 micrograms/ml of acetylated LDL. Because we have previously demonstrated that activated platelets enhanced macrophage cholesteryl ester storage, we examined the ability of THP-1 cells to store cholesteryl esters in response to coculture with platelets. Compared with macrophages, dividing THP-1 cells and phorbol ester-treated THP-1 cells accumulated only 50% and 33% as much cholesteryl esters, respectively. Furthermore, although platelets induced a 90% reduction in cholesterol synthesis in macrophages by day 5, cholesterol synthesis in THP-1 cells and phorbol ester-treated THP-1 cells was inhibited less than 50% by platelets. Nevertheless, both THP-1 cells and macrophages responded to platelets by increasing their secretion of apolipoprotein E. Therefore, we conclude that dividing THP-1 cells and phorbol ester-treated THP-1 cells are capable of forming foam cells in response to physiologic doses of both LDL and acetylated LDL, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call