Abstract

It is well known that the carrier-optical-phonon scattering rates dominate the carrier-acoustic-phonon scattering rates in many polar materials of interest in electronic and optoelectronic applications. Furthermore, it is known that the Fröhlich coupling constants for carrier-optical-phonon in many materials is close to or great than unity, calling into question the validity of scattering rates based on the Fermi golden rule. In a celebrated paper by Thornber and Feynman it was shown that that the large Fröhlich coupling constant in polar materials does indeed lead to substantial corrections to the Fermi golden rule scattering rates. These large corrections are due to the fact that for strong coupling constants, the first-order perturbative approach underlying the Fermi golden rule does not take into account the presence of many phonons interacting simultaneous with the carrier. In this paper, the Thornber–Feymnan scattering rates for carrier-optical-phonon interactions are derived for several technologically important wurtzite semiconductors—BN, ZnO, CdS, CdSe, ZnS, InN, and SiC- and it is shown that the commonly used Fermi golden rule scattering rates must be corrected by factors ranging up to an order-of-magnitude. The corrections to the Fermi golden rule reported herein have widespread impact on carrier transport for materials with large Fröhlich coupling constants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call