Abstract

Fermi's golden rule (FGR) offers an empirical framework for understanding the dynamics of spin-lattice relaxation in magnetic molecules, encompassing mechanisms like direct (one-phonon) and Raman (two-phonon) processes. These principles effectively model experimental longitudinal relaxation rates, denoted as T1-1. However, under scenarios of increased coupling strength and nonlinear spin-lattice interactions, FGR's applicability may diminish. This paper numerically evaluates the exact spin-lattice relaxation rate kernels, employing the extended dissipaton equation of motion formalism. Our calculations reveal that when quadratic spin-lattice coupling is considered, the rate kernels exhibit a free induction decay-like feature, and the damping rates depend on the interaction strength. We observe that the temperature dependence predicted by FGR significantly deviates from the exact results since FGR ignores the higher order effects and the non-Markovian nature of spin-lattice relaxation. Our methods can be easily extended to study other systems with nonlinear spin-lattice interactions and provide valuable insights into the temperature dependence of T1 in molecular qubits when the coupling is strong.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call