Abstract

Computer aided diagnosis (CAD) is an important issue, which can significantly improve the efficiency of doctors. In this paper, we propose a deep convolutional neural network (CNN) based method for thorax disease diagnosis. We firstly align the images by matching the interest points between the images, and then enlarge the dataset by using Gaussian scale space theory. After that we use the enlarged dataset to train a deep CNN model and apply the obtained model for the diagnosis of new test data. Our experimental results show our method achieves very promising results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.