Abstract

Current finite element human thoracic models are typically evaluated against a limited set of loading conditions; this is believed to limit their capability to predict accurate responses. In this study, a 50th-percentile male finite element model (GHBMC v4.1) was assessed under various loading environments (antero-posterior rib bending, point loading of the denuded ribcage, omnidirectional pendulum impact and table top) through a correlation metric tool (CORA) based on linearly independent signals. The load cases were simulated with the GHBMC model and response corridors were developed from published experimental data. The model was found to be in close agreement with the experimental data both qualitatively and quantitatively (CORA ratings above 0.75) and the response of the thorax was overall deemed biofidelic. This study also provides relevant corridors and an objective rating framework that can be used for future evaluation of thoracic models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.