Abstract

Disinfection is an indispensable process to inactivate pathogens, while unexpected disinfection by-products (DBPs) would also be formed between the reaction of residual disinfectants and microorganisms in the water distribution system (WDS). However, there are few studies referring to the formation of DBPs and DBPs-associated toxicity under various disinfection methods based on microorganisms in the real WDS. In addition, the main contributors of bacterial communities or components that generate DBPs are unclear. In this study, the formation of trihalomethanes (THMs), halo-acetic acids (HAAs), nitrosamines (NAs) from culturable microorganisms in pipeline network by ozonation(O3), chlorination (Cl2), chloramination (NH2Cl) and joint disinfection methods were compared, meanwhile, their calculated toxicities under different oxidation scenarios were also discussed. Moreover, 16S ribosomal ribonucleic acid (rRNA) gene sequencing was used to identify the main microbial communities. The results demonstrated that THMs and HAAs increased with increasing disinfectant dosages, while the quantity of NAs (mainly nitroso dimethylamine (NDMA)) was not significantly related to disinfectant dosages for each disinfection strategy. Chloroform (TCM) and dichloroacetic acid (DCAA) were the dominant THMs and HAAs species, respectively. NDMA existed in the samples before disinfections, which may due to the metabolic activity of microorganisms. Pre-O3 increased THMs formation during subsequent Cl2 and NH2Cl treatment. However, pre-O3 effectively reduced HAAs produced by subsequent chlorination. O3/Cl2 disinfection had the highest DBPs formation potential (DBPFP) (883.6 nM), while its calculated toxicity was similar to that in Cl2 disinfection treatment. Pseudomonas was the most abundant bacterial genus in biofilm of WDS pipeline. This study can aid in an optimal disinfection strategy for water treatment plants to reduce the toxicity of DBPs caused by biomass in pipelines and ensure water quality safety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call