Abstract

This study assessed the characteristics of disinfection byproducts (DBPs) formation from intermediate organics during UV/H2O2 treatment of activated sludge and algae cells under various reaction conditions. The DBPs including trihalomethanes (THMs), haloacetic acids (HAAs), haloketones (HKs) and haloacetonitriles (HANs) in UV/H2O2-treated and chlorinated water were measured. The results showed that both dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) increased during the initial stage of UV/H2O2 treatment due to the lysis of sludge and algae cells, which enhanced the formation of both C- and N-DBPs; however, both DOC and DON decreased after longer reaction times. During the UV/H2O2 treatments, THMs formation potential (THMFP) peaked earlier than did HAAs formation potential (HAAFP). This shows that the dissolved organics released from lysis of microbial cells in the early stages of oxidation favor the production of THMs over HAAs; however, HAAs precursors increased with the oxidation time. Chlorination with bromide increased the formation of THMs and HAAs but less HKs and HANs were produced. Comparisons of normalized DBP formation potential (DBPFP) of samples collected during UV/H2O2 treatments of four different types of organic matter showed that the highest DBPFP occurred in filtered treated wastewater effluent, followed by samples of activated sludge, filtered eutrophicated pond water, and samples of algae cells. With increasing oxidation time, the dominant DBP species shifted from THMs to HAAs in the samples of activated sludge and algae cells. The DBPFP tests also showed that more HAAs were formed in biologically treated wastewater effluent, while the eutrophicated source water produced more THMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call