Abstract

The Epstein-Barr virus-encoded latent membrane protein 1 is considered the Epstein-Barr virus oncogene based on its importance in Epstein-Barr virus-induced B-lymphocyte transformation. Beta-catenin is a potential oncogene, and its accumulation has been implicated in a variety of human cancers. Here, we found that beta-catenin protein was highly expressed in Epstein-Barr virus-immortalized B-cell lines compared with peripheral blood mononuclear cells from healthy donors. Beta-catenin expression in Epstein-Barr virus-immortalized B-cell line decreased following treatment with LY294002, an inhibitor of phosphatidylinositol 3-kinase. Treatment with LY294002 or knockdown of beta-catenin by small interfering RNA reduced the growth of Epstein-Barr virus-immortalized B-cell line. Transient transfection of latent membrane protein 1 expression plasmid increased beta-catenin protein expression and beta-catenin-dependent transcription. Latent membrane protein 1 deletions mutants lacking the carboxyl-terminal activating region 1 domain failed to enhance beta-catenin protein expression and beta-catenin-dependent transcriptional activity. They also failed to increase phosphorylated AKT expression. Dominant-negative AKT suppressed latent membrane protein 1-induced beta-catenin-dependent transcriptional activity. These results suggest that latent membrane protein 1 activates beta-catenin through the phosphatidylinositol 3-kinase/AKT signaling pathway. Activation of the beta-catenin pathway by Epstein-Barr virus may contribute to the lymphoproliferation characteristic of Epstein-Barr virus-infected B-cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call