Abstract
Relativistic Hartree–Fock–Roothaan (RHFR) self-consistent field theory for molecules developed by Malli and Oreg (J Chem Phys 63, 830, 1975) is reviewed. Ab initio all-electron fully relativistic Dirac–Fock and the corresponding nonrelativistic Hartree–Fock calculations for a number of molecular systems of heavy and superheavy elements are discussed in order to asecrtain relativistic effects. It is pointed out for the first time that there are dramatic antibinding effects of relativity for diatomics of the superheavy elements ekagold and ekaastatine. These are first results of antibinding effects of relativity in relativistic quantum chemistry. Moreover, in order to take into account the relativistic and electron correlation effects simultaneously for these systems, relativistic Moeller Plesset second order (RMP2), coupled-cluster singles doubles (RCCSD) and RCCSD with inclusion of triple corrections perturbationally (RCCSD(T)) calculations performed by the author for a number of atomic and molecular systems of superheavy elements (SHE) including the primordial SHE ekaplutonium E126 (Z = 126) (with g atomic spinors occupied in the ground state atomic configuration) are reported. Such calculations and results have not been reported before for systems of superheavy elements.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have