Abstract
The negative solution to the famous problem of 36 officers of Euler implies that there are no two orthogonal Latin squares of order six. We show that the problem has a solution, provided the officers are entangled, and construct orthogonal quantum Latin squares of this size. As a consequence, we find an example of the long-elusive Absolutely Maximally Entangled state AME(4,6) of four subsystems with six levels each, equivalently a 2-unitary matrix of size 36, which maximizes the entangling power among all bipartite unitary gates of this dimension, or a perfect tensor with four indices, each running from one to six. This special state deserves the appellation golden AME state, as the golden ratio appears prominently in its elements. This result allows us to construct a pure nonadditive quhex quantum error detection code ((3,6,2))_{6}, which saturates the Singleton bound and allows one to encode a six-level state into a triplet of such states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.