Abstract

The toxicity of trivalent chromium compounds; chromic oxide and basic chromium sulfate, was investigated in rats in a 13-week nose-only inhalation study that included a 13-week recovery period. Nose-only exposures to insoluble chromic oxide dust at 4.4, 15, or 44 mg/m3 or soluble basic chromium sulfate dust at 17, 54, or 168 mg/m3 (trivalent chromium equivalent concentrations of 3, 10, and 30 mg/m3) were carried out for 6 h/day, 5 days/week. No compound-related mortality occurred. General toxic effects, only observed with high-exposure levels of basic chromium sulfate, included sporadic signs of labored breathing and depressed body weights. No apparent compound-related effects were noted for sperm motility or morphology, for any concentration of either test material. Bronchoalveolar lavage fluid evaluations showed test material in mononuclear cells with chromic oxide and increased neutrophils, protein, lactic dehydrogenase and cellular debris with basic chromium sulfate. The principle effects for both materials were primarily to the respiratory tract. Chromic oxide caused pathological changes in the bronchial and mediastinal lymphatic tissue and lungs, consisting of the presence of pigment-laden macrophages, lymphoid and septal hyperplasia, and interstitial inflammation similar to that observed with other inert dusts. Basic chromium sulfate produced more severe and widespread effects in the nasal cavity, larynx, lungs, and mediastinal lymph node. Effects were characterized by accumulation of foreign material, infiltration of alveolar macrophages, septal cell hyperplasia, and granulomatous and chronic inflammation. Pigment was still present in chromic oxide and, to a lesser extent, in basic chromium sulfate-treated animals after the 13-week recovery period, with partial recovery of the pathological lesions. A NOAEL was not established for either test material, but 4.4 mg/m3 was thought to be near the NOAEL level for subchronic exposure to chromic oxide. The results of this study indicate significant differences in toxicity to the respiratory tract between trivalent chromium compounds chromic oxide and basic chromium sulfate. These are likely related to differences in acidity and water solubility, rather than chromium concentration per se. This conclusion is substantiated by the lack of effect on other internal organs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call