Abstract

Dibutyl phthalate (DBP), di-2-ethylhexyl phthalate (DEHP), and benzyl butyl phthalate (BBP) are used in personal and medical care products. In the ovary, antral follicles are essential for steroidogenesis and ovulation. DBP, BBP, and DEHP are known to inhibit mouse antral follicle growth and ovulation in vitro, and associate with decreased antral follicle counts in women. Given that the in vivo effects of a three-phthalate mixture on antral follicles are unknown, we evaluated the effects of a human relevant mixture of DBP, BBP, and DEHP on ovarian follicles through proteome profiling analysis. Adult CD-1 female mice were fed corn oil (vehicle), or two dose levels of a phthalate mixture based on estimated exposures in general (32 µg/kg/day; PHT 32) and occupationally exposed (500 µg/kg/day; PHT 500) populations for 10 days. Antral follicles (>250 µm) were isolated and subjected to proteome profiling via label-free tandem mass spectrometry. A total of 5,417 antral follicle proteins were detected, of which 194 were differentially abundant between vehicle and PHT 32, and 136 between vehicle and PHT 500. Bioinformatic analysis revealed significantly different responses between the two phthalate doses. Protein abundance differences in the PHT 32 exposure mapped to cytoplasm, mitochondria, and lipid metabolism; while those in the PHT 500 exposure mapped to cytoplasm, nucleus, and phosphorylation. When both doses altered proteins mapped to common processes, the associated predicted transcription factors were different. These findings provide novel mechanistic insight into phthalate-associated, ovary-driven reproductive outcomes in women.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.