Abstract

We report a ∼3-fold enhancement of third-harmonic generation (THG) conversion efficiency using indium tin oxide (ITO) nanoparticles on the surface of an ultra-high-Q silica microsphere. This is one of the largest microcavity-based THG enhancements reported. Phase-matching and spatial mode overlap are explored numerically to determine the microsphere radius (∼29 µm) and resonant mode numbers that maximize THG. Furthermore, the ITO nanoparticles are uniformly bonded to the cavity surface by drop-casting, eliminating the need for complex fabrication. The significant improvement in THG conversion efficiency establishes functionalized ITO microcavities as a promising tool for broadband frequency conversion, nonlinear enhancement, and applications in integrated photonics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call