Abstract

Indium tin oxide (ITO) nanoparticles (NP) have extensive applications in industrial fields, and concerns regarding their potential toxicity in humans and environmental impact have increased. Since exposure to ITO NP is mainly via skin and inhalation, this study was conducted utilizing human lung epithelial (A549) cell line. Cells were exposed to different concentrations of the ITO NP for 24 and 48 hr. A severe cytotoxic response of ITO NP was observed as evident by the (3-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and neutral red uptake assays after 48 hr exposure. ITO NP significantly reduced glutathione levels with a concomitant increase in lipid hydroperoxide levels, superoxide activity, and reactive oxygen species (ROS) generation after exposure. A significant induction in caspase activity and formation of condensed chromosomal bodies was also observed after ITO NP (10 or 25 µg/ml) exposure. Furthermore, a significant induction in DNA damage was observed by the Comet assay in cells exposed to ITO NP. Our data demonstrate that ITO NP display cytotoxic and genotoxic potential. However, increase in ROS levels and oxidative stress leading to oxidative DNA damage and condensed chromosomal bodies formation, suggests involvement of apotosis. Thus, ITO NP-mediated effects on cell viability indicate cytotoxicity, and therefore, exposures need to be carefully monitored in the industrial sector.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call