Abstract

The sulfur bioconversion-associated processes (SBAP) for sewage treatment have been extensively reported so far. In this study, biological thiosulfate reduction (BTR)-driven biotechnology for high rate sulfidogenesis and organic removal was explored to further close the gap of our knowledge on the sulfur cycle-based sewage treatment bioprocess. With thiosulfate as the electron acceptor, the sulfidogenic rate in the UASB rector is 105.6 mg S/L/h with the sludge yield of only 0.044 g MLVSS/g CODsubstrate. Thus providing sufficient electron donors or chemical sources (i.e. HS−) for the downstream autotrophic denitrification or for the cost-effective heavy metal precipitation. Thiosulfate disproportionation was not observed in BTR reactor. High-throughput pyrosequencing analysis reveals that Desulfobulbus and Desulfomicrobium are the predominant thiosulfate-reducing genera and the thiosulfate disproportionation-bacteria were at much lower genus level. The specific thiosulfate-reducer i.e. Dethiosulfatibacter which could utilize thiosulfate but not sulfate as the electron acceptor was also identified. Batch testing results indicate that the sulfidogenic activity on thiosulfate was 1.5 times that on sulfate. The optimal pH for BTR activity was between 7.0 and 8.0, a typical pH range of the municipal sewage. Thiosulfate can be efficiently recovered in the sulfide-driven denitritation reactor enriched with abundant sulfide-oxidizing genera (mainly including Thiobacillus and Sulfurimonas). Finally, a conceptual model of the sulfur cycle based on the biotransformation between thiosulfate and sulfide was established, offering new insights into the sustainable SBAP with sludge minimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.